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Self-similar flows with uniform velocity gradient and their 
use in modelling the free expansion of polytropic gases 

By G. J. PERT 
Department of Applied Physics, University of Hull, Hull HUB 7 R X  

(Received 29 January 1979 and in revised form 25 October 1979) 

The self-similar motion of a polytropic gas with a linear velocity distribution is 
considered in an arbitrary v-dimensional space. It is shown that if the initial state 
of the gas is isotropic the flow has a characteristic ellipsoidal form. Both expanding 
and compressing flows are shown to exist. The application of such flows as models for 
the expansion of an initially uniform mass of gas into vacuum is considered by com- 
parison with computationally modelled expansions in one-dimensional cylindrical and 
spherical geometries. It is found that the accuracy of the representation increases 
when the heating time is long compared with the characteristic time of expansion. 

1. Introduction 
Self-similar solutions play an important role in gas dynamics by virtue of their 

relative mathematical simplicity. Sedov (1957) has given a general approach for the 
construction of such solutions in one dimension and shown how they may be applied 
to a variety of physical problems. These include the progressing wave solutions 
(Courant & Friedrichs 1948) as well as those considered here. In  this paper we shall 
consider only the behaviour of those self-similar flows for which the velocity profile 
is linear in space. This work will present a generalization of Sedov’s (1  957) analysis 
to an arbitrary dimensional space. 

The self-similar expansion into vacuum of a mass of gas with a linear velocity profile 
has proved to be a convenient model to study the development of such expansions 
analytically. The model has been widely explored in one-dimensional planar, cylin- 
drical and spherical geometries (Sedov 1957; Keller 1956) for adiabatic flows of poly- 
tropic gases. The extension of the model to include isothermal flow appears in papers 
by Kulikovskii (1958), Korobeinikov & Ryazanov (1959), and Imshennik (1960). The 
model was further extended by Nemchinov (1961, 1964) to include heating of the gas 
in conformity with the self-similar expansion. This approach was further refined by 
Haught & Polk (1970) in a numerical study of the heating of small pellets by lasers. 

The above studies were all performed in one dimension only. The generalization to 
three dimensions was made by Nemchinov (1965) and Dawson, Kaw & Green (1968) 
extending the model to include the expansion of a polytropic gas with an ellipsoidal 
density distribution. 

The application of this self-similar model is not limited to studies of expansion. 
Kidder (1974) has shown that by application of an appropriate pressure on the 
bounding surface, the model may also be used to describe the uniform adiabatic 
compression of spherical polytropic gas masses. 
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In  this paper a general description of this type of self-similar flow in a space of 
arbitrary dimensions is developed : the above solutions appearing naturally within 
this description. It is found that in the practically important case when one of the 
initial-state variables is uniform, the flow is ellipsoidal in the Eulerian space of 
the flow, the eccentricities changing in time. Furthermore it is shown that such an 
ellipsoidal flow is self-similar. 

The application of the self-similar, or similarity model is much restricted by the 
artificial nature of the initial distribution of state parameters introduced as a necessary 
consequence of the self-similar condition. However, as is well known, all expansions 
ultimately become self-similar in the asymptotic limit (Zel’dovich & Raizer 1966). 
Moreover as Nemchinov (1 964) has pointed out and Fader (1 968) demonstrated many 
flows rapidly approach a self-similar form. I n  consequence the similarity model may 
be used as an approximate description of such a flow, provided the appropriate 
matching parameters are known. This approach has been used by Haught 85 Polk 
(1970) and their followers in spherical geometry, and by the author (Pert 1976) for 
two dimensional cylindrical systems. Since the central assumption of this approach 
rests on the rather insecure foundation of insight (Nemchinov 1964) and a few indirect 
numerical tests (Fader 1968) we have examined the question in more detail. I n  this 
paper we present results of a numerical study of the expansions of one-dimensional 
cylinders and spheres to be compared with the equivalent self-similar model. I n  
general we find that for the cases used practically the self-similar representation is 
remarkably good, and we present values of the appropriate matching parameters. 

2. Self-similar expansion in a v-dimensional space 
We consider the dissipationless flow of a gas body of characteristic dimensions X i  

which are functions of time only, in a v-dimensional Cartesian geometry. We define 
a self-similar motion as one for which the co-ordinates of a given fluid element ( x i )  
remain in a fixed proportion to the characteristic dimensions (Xi) independent of 

(1) 
time, i.e. 

where the v values & are constant for a given fluid element. We may therefore regard 
Ci as a Lagrangian co-ordinate. The fluid velocity 

x i / X i  = ti, 

d X i  
u .= 2 =ti=* 

ui = U,Xi/Xi. 
Hence, if Ui = dX,/dt ,  

This linear velocity dependence on the co-ordinate is also a sufficient condition, as 
well as a necessary one, for if equation (2)  is valid then for a given particle 

1 dxi 1 d X i  
xi dt X i  dt 

and equation ( 1 )  follows. Thus flows exhibiting either condition (1) or (2) may be 
regarded as self-similar for the present study. 

- -= - -  

The mass of a fluid cell of volume 
v 

dT = rl[ dxi, 
i=l 
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is constant in time, as is the volume of the Lagrangian element 
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” 
d7: = n a&. 

i = l  
Thus, defining the Jacobian J 

we see that p J  is an invariant of motion, and hence since J is a function of time alone, 
that the density p is a separable function of time t ,  and the Lagrangian space co- 
ordinates &. 

Furthermore, it follows from equation ( 2 )  that the system must have reflexion 
symmetry in each co-ordinate plane, and therefore that p must be an even function 
of the Lagrangian variable &, 

where we have represented f (<:,<$, ...) by f (C:), a form we shall use throughout. 

P = P o ( W  (t3 (4) 

The form of the function f is determined by Euler’s equation which yields for the 
pressure p ,  

and hence that the pressure is also a separable function of form 

where hi is a separation constant. 
Since the pressure and density uniquely specify the thermodynamic state of the 

gas, all state variables must be separable functions of time and the Lagrangian 
variables ti. Referring to equation (1) we observe that the co-ordinates xi are them- 
selves separable, and that an equivalent condition establishing equation (1) be that 
it be separable in time and the Lagrangian co-ordinates. We may therefore regard 
separability of this form as an equivalent condition for this self-similar motion, 
alternative to (1) or (2). 

From equation (8) we observe that the initial condition of one state variable specifies 
the form of the spatial distribution f; and the temporal form of one (not necessarily 
the same) state variable the time development of the motion through (4) and (7) 
and the equation of state. 

The equation of energy conservation in Lagrangian co-ordinates may be written: 

as dV 
-+p- = Q, at at (9) 

where s is the specific internal energy, V the specific volume and Q the heat released 
per unit mass a t  that fluid element. If the motion is self-similar it is clear that the 

9-2 
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left-hand side of this equation is separable. It is therefore a necessary condition that 
the heat release function be of the form: 

Q = Q o ( t ) G ? .  (10) 

In the particular case of a polytropict gas of adiabatic index 
form : 

and 

equation (9) takes the 

&) = P@(k3/f(51) (11) 

where ,u is a separation constant. 
The heat release term may be generalized to include both internal (chemical 

reactions, nuclear energy release) and external (laser heating) sources, and energy 
redistribution (thermal conduction). In most cases the heat release function q(c:) will 
be specified, which in turn defines the self-similar distribution functions f (5:) and 
@(t:) through equations (8) and (11) .  For example in the case of a uniform internal 
aource, q(5:) is a constant, 

(13) 

The gas temperature is therefore constant and the flow isothermal (Nemchinov 1965). 
In principle, equation (12) allows a determination of the temporal development of 

the flow, however, in many cases the equation of overall energy conservation to be 
derived subsequently from equation (28) provides a simpler approach. 

a m  = @(W)/fcm = const. 

Ellipsoidal Jlows 
Of special importance are isotropic systems where the initially specified state variable 
has no preferred direction in the Lagrangian space, ti, i.e. i t  is a function of the 
Lagrangian ‘radius’ variable, 

Y Y 

5 2  = 6: = ( Z i / X i ) 2  
i = l  i= 1 

which in Cartesian space is an ellipsoidal variable. Since the equation of state implies: 

equation (8) requires that $ and f be functions of c2 only, and hence that all state 
variables be functions of c 2  alone, i.e. ellipsoidal distributions. The most usual class 
of initial conditions is isometric, i.e. a uniform distribution of some specified state 
variable, e.g. temperature (isothermal) entropy (isentropic) or density (isostatic). No 
isobaric (constant pressure) solutions exist. 

We define an ellipsoidal flow as one for which the state variables are always functions 
of the ellipsoidal variable 5, and time t ,  alone. Such flow is peculiar to self-similar 
motion of the type considered here. Thus the equation of continuity takes the form 

t A polytropic gas is one whose internal energy is directly proportional to its temperature 
(Courant & Friedrichs 1948). 
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from which we conclude that the velocity components ui, take the form: 

ui = & i g ( C , t )  
and equation ( 1 6 )  takes the form 

If this equation is independent of ti, either 

- = - -  u, - ... Ul 
or p(g- 1) = h,(t). 

XI x, 
Euler’s equation takes the form 

and is only independent of ti if 

_ - _ _  Ul - u2 - ... or (9- l), = h,(t) .  
Xl x, 

It is clear from the nature of the solution that UJX, = U,/X, = ... if and only if 
X ,  = X, = . . . , i.e. the motion is spherical. The other conditions require either g = 1 
or that p and g be functions of time alone, and therefore that the velocity distribution 
is given by (2). We therefore conclude that ellipsoidal flows are necessarily self-similar. 

This result may be further generalized to  cover flows in which an initially ellipsoidal 
distribution moves in such a way that a family of similar ellipsoids fixed in the fluid 
remain similar ellipsoids throughout the flow (although of course, the eccentricities 
change in time). It is evident that  the flow in ti space is radial. I n  consequence, the 
distribution between two neighbouring ellipsoids will remain uniform, i.e., the 
distribution is ellipsoidal a t  all times. Hence by the above theorem the motion is 
self-similar a t  all times. 

Energy conservation 

The total energy a t  any time in the gas E ( t )  is the sum of the kinetic (Ek) and thermal 
(E,) energies: 

r v 

and 

for an ideal gas of specific heat C7, and temperature T. For an expansion into vacuum, 
the pressure is zero on the boundary of the gas: 
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These equations can be markedly simplified in the case of ellipsoidal flow, where f is 
a function of c2 only: 

by symmetry. Hence defining 

I E 4 f ( 6 W t  = + J X m 2 ) d 7 5  (25) 

i = l  

where y' = 2 / ( y -  1 ) .  This equation, together with equation (7)  in the form: 

uniquely determine the expansion. These equations are of a form which is convenient 
for numerical integration. 

We may note that motions with differing initial gas states, i.e. different forms off 
and values of E and M ,  are similar, being parametrized by the aspect ratios (or eccen- 
tricities) of the original ellipsoid, the constant, y ,  and the dimensionless form of the 
energy e ( t )  = E(t) /Eo.  

Adiabatic $ows 

If the entropy everywhere in the gas remains constant in time, although it  may vary 
spatially, the flow is adiabatic. The spatial pressure and density distributions must 
satisfy the adiabatic equation of state 

#(65) = f'(E-3 s(E-3, (30) 

where g is a function expressing the initial spatial entropy distribution in the gas. 
Hence from (8) 

yg p - 2 '  a f l a g ; )  + f(r-1) a g / a ( g )  = - hi, (31) 

where hi is a separation constant which determines the relationship of the variables 
Xi to  the boundary. I n  the case of ellipsoidal flow, the distribution takes the one- 
dimensional form, whose isometric forms are well known (Sedov 1957; Keller 1956; 
Zel'dovich & Raizer 1966). For example isentropic forms are: 

Isothermal flows 

If the gas is everywhere at the same temperature, which may vary in time, t,he profile 
is Gaussian (Imshennik 1960; Fader 1968; Pert 1974) 

(33) f = foexp [ - (C/C0)21. 

We may note that in the absence of heat input, isothermal flow is also adiabatic, a 
result of some practical significance (Pert 1974). 
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Self-similar compression 

Although we have implicitly assumed in the foregoing discussion that the gas is 
expanding, this need not be the case, and the equations derived also represent uniform 
compression of the medium. I n  this case the boundary condition on the surface of the 
gas is somewhat different, namely a finite pressure. In  addition since the flow is 
inward the separation constants, hi,  are negative. Thus for an ellipsoidal adiabatic 
isentropic compression the density and pressure profiles take the form 

in contrast to equation (32) for expansion. The equation of motion for adiabatic flow 
has the form 

a u, a u2 
J y-1 xcz- - - ...=(?) . 

X -  
I at 

( x q 0  = (xy 2) 0 

135) 

In  the case of y = Q the complete integral may be evaluated for spherical motion 
(Kidder 1974). 

3. The similarity solution as an asymptotic form of a general expansion 
In  general we are not interested in the expansion into vacuum of a mass of gas with 

an artificial mass distribution such as for example (32) or (33) but rather ones with an 
arbitrary initial form. The importance of self-similar solutions lies in the fact that 
they represent the asymptotic motion of the arbitrary mass for large times. This 
may be demonstrated by the following generalization of an argument given by 
Zel’dovich & Raizer (1966). 

Consider the expansion into vacuum from the rest of a three-dimensional mass of 
gas M ,  with characteristic dimensions X ,  Y and Z and initial thermal energy E .  The 
gas pressure at any time p - Eth/X Y z ,  where E,,& is the total thermal energy at  time 
t ,  which is necessarily less than E due to the kinetic energy. The pressure gradients 
are of order p / X ,  p / Y  and p / Z  in the x, y and z directions respectively, and the 
density N M I X  Y Z .  Hence the Lagrangian equation of motion for the characteristic 
dimension X is 

As time increases, the thermal energy decreases owing to the increase in kinetic 
energy. Since the thermal energy must be bounded, we may suppose that in general 
it can be represented by a form E,,L “N Eo+ E,g(X)  + E,h (X) ,  where g ( X )  --f 0 faster 
than X-8,  S > 0 as X + 00, and h ( X )  is an oscillatory function of constant or decreasing 
amplitude as X increases. Therefore 

+Uz = tug+ E,/M In ( X )  + E,/Mg‘(X)  + E,/Mh’(X) ,  (37) 

where g’ (X)  + 0 faster than X-8,  as X + a, and h‘(X)  is an oscillatory function of 
decreasing amplitude. Since the kinetic energy of the fluid element associated with 
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the characteristic dimension X is bounded we may conclude that E, = 0. Therefore 
since E,, is bounded from below (by 0) we conclude that E,, --f 0 faster than x-8, 
a s X + m .  

Applying this result to the Lagrangian equation of motion in the x direction for 
an arbitrary fluid element, we find that 

u -+ const. as X + 00. 

Hence by a similar argument for the y and z directions we find that the respective 
velocity components v and w are also constant. Therefore in the limit t + m: 

x + u t ;  y + v t ;  x+wt. ( 38) 

The velocity distribution therefore becomes self-similar in the asymptotic limit. 
Hence the state variables are described by separable functions in this limit. 

Unfortunately we cannot determine the spatial distribution functions, f, #, etc. 
for the flow in this limit, without following the flow from its inception. It might be 
expected, for example, in an isentropic flow, since the fluid always remains isentropic 
that the asymptotic density profile would approach the corresponding self-similar 
isentropic profile, equation (32). However, as the limit is only reached as p + 0 and 
p -+ 0, when the velocities are constant, the actual profile, which is maintained, is 
that which is developed prior to the asymptotic region of the flow (Zel’dovich & 
Raizer 1966). Nonetheless we may expect, on physical grounds, that the actual flow 
profile will closely resemble the self-similar one in the asymptotic limit, and that the 
flow will develop this form in a characteristic time N LIC,, where L is a length charac- 
teristic of the initial dimensions, and C,, the initial sound speed. This conclusion is 
borne out by detailed studies of the flow in special cases (Fader 1968). 

There is one further case offlows in which a self-similar profile is established, namely 
the case of free molecular flow (Keller 1948; Molmud 1960). If  the gas initially has a 
Maxwellian velocity distribution, the asymptotic density profile is Gaussian, as for 
isothermal flows. 

4. The approximation of real expansions by equivalent self-similar flows 
The simplicity of the form of the differential equation (28) allows a complete solution 

to the problem of expanding gas flow to be made with a minimum of numerical effort. 
Unfortunately these solutions are only available for restricted spatial density 

profiles, which depend on the physical constraints of the problem. In particular one 
is usually concerned with the expansion into vacuum of an initially uniform gas mass 
of restricted physical dimensions (hereafter called the ‘test distribution ’), e.g. a slab, 
a cylinder or a sphere, whose initial density profile has the form: 

p(0 )  for xi < Xi, 
for xi > xi. P = (0 (39) 

The time development of such a gas mass involves a complete spatial and temporal 
solution of the equations of hydrodynamics, and is correspondingly considerably 
more difficult. However, one may argue on physical grounds that the final self-similar 
profile obtained must have a form which approximates to the equivalent self-similar 
form, e.g. an isothermal expansion will ultimately take on a Gaussian form. 
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If this hypothesis is correct, we may use the self-similar model to approximate the 
behaviour of an expanding gas mass in an averaged sense, with a considerable reduction 
in the computational effort required. Thus, for example, in many problems in the 
expansion of laser produced plasma one is interested in the gross parameters of the 
expanding gas mass rather than in its detailed structure. In such cases the self- 
similar form may be used to give a reasonable approximation of the complete history 
of the expansion of a uniform gas mass, the averaged values of the various variables 
being equivalanced. 

In order to carry out this simulation we must define an equivalent self-similar 
ellipsoid to the uniform gas mass. It is clearly sensible to identify the form of the 
profile with that of the corresponding self-similar flow (isothermal, isentropic etc.), of 
the same total mass. The initial dimensions of the uniform gas mass x,, yo, zo must be 
expressed in terms of the initial parameters X,, Yo, 2, of the ellipsoid by 

x, = rzxo, Y, = rvyo, z, = rzzo.  

It follows from a dimensional argument that the factors ri depend on the aspect 
ratios, 

1, = xo/yo, I ,  = X,O/~o, (41) 

only, for a constant total-energy expansion. If the fluid is heated during the expansion 
the additional parameters E,/E, and LT/C,, where r is the duration of the heating 
pulse, must be considered. Indeed when the heating pulse is long (Lr/C, > 1) 
Nemchinov (1964) has pointed out that we may expect that the body of gas will 
possess a self-similar form throughout much of its motion. 

In assigning values to the real body of the gas based on the equivalent self-similar 
expansion we must ensure that the values so obtained remain physical. In particular, 
the averaged density of the self-similar profile may, for early times, when the test 
gas profile is still nearly square, exceed the initial density of the test gas distribution. 
This is clearly unphysical, but is easily circumvented by the use of a Pimple switch 
function of the form: 

p = p(O) if jJs > p(O), otherwise p = is,, (42) 

where p ,  is the mean density calculated from the similarity expansion. In cases of 
three-dimensional expansion where the aspect ratios are finite and not unity, it may 
be necessary to generalize equation (42) to allow phases of dominant one- or two- 
dimensional expansion to take place initially due to the different characteristic times 
for establishing a similarity form in the different directions; this point is discussed in 
more detail in connexion with isothermal expansions in Pert’s 1979 paper. 

Alternatively we may consider the expansion of the test distribution in terms of 
its self-similar asymptotic form. From equation (28) we can observe that this may be 
described by means of the characteristic term Y. This approach, whilst automatically 
yielding the correct solution in the asymptotic limit, has the disadvantage that an 
a priori knowledge of the asymptotic distribution is required to evaluate Y. In the 
subsequent sections the calculations of the distributions are given for a variety of 
cases and the values of Y tabulated (with the factors r = 1, i.e. with the similarity 
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variables Xi defined by the edge of the distribution). In order to make practical use 
of the solutions thus generated we define the factors 

where (p}  is the average density defined by volume, p is the mean density defined by 
mass given subsequently in equation (44) and po is the density a t  the centre. 

We shall, in the remainder of this paper, examine the validity of this assumption 
by comparing computer calculations of the development of the test distribution with 
those of the similarity model. In this paper we shall restrict ourselves to considering 
one dimensional flow in cylindrical and spherical geometry. The extension to cases 
of two and three dimensions, whilst straightforward in principle offers problems in 
detail since the final distribution is not necessarily a function of the variable c2. Thus 
a simple representation by a self-similar distribution which is a function of c2 alone 
may not be possible. 

5. One-dimensional expansions 
In this section we compare the expansion into vacuum of cylindrical and spherical 

uniform gas masses with the equivalent similarity solution. The flow of the uniform 
gas mass is evaluated numerically using a standard one-dimensional Lagrangian code 
(Richtmyer & Morton 1967) with 100 cells. Since the expansion may be treated in 
terms of dimensionless quantities, we may specify the initial conditions quite generally 
by means of arbitrary values. For this purpose we have used an initial radius R, = 1,  
specific energy E,/M = 1 and density p(0 )  = 1 .  

In order to compare the motion of the uniform gas mass with the equivalent simi- 
larity solution we define some simple comparison quantities. These are a mean density 

where dm is an element of mass, which broadly describes the central dense region of 
gas, and a parameter Re related to the periphery of the expansion. 

Adiabatic flows 

Figure I shows the computed density profiles at time 10 000 for both spherical (a)  and 
cylindrical ( b )  geometries. A t  this time the profiles represent a close approximation 
to the final asymptotic profiles. In order to show theapproach to the similarity 
form we have plotted the relative densityp(r, t) /p(O, t )  against the parameter 1 - (r/ro)2 
where ro is the edge of the outermost cell of the fluid. For comparison the similarity 
profile is plotted at  the same time. Some marked differences are immediately apparent. 
The central density is always larger for the similarity model than for the real flow 
reflecting an overall faster expansion of the initially uniform gas. In the case of 
spherical expansion the asymptotic velocities of the plasma edge show close agreement 
for model and real systems. For cylindrical expansions the agreement is much poorer. 
From table 1 we observe that in contrast the central density is better modelled for 
cylindrical systems. 
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FIGURE 1. Asymptotic density profiles for the adiabatic expansion of polytropic gas spheres (a) 
and cylinders ( b )  of adiabatic index, y (full line). The self-similar profile a t  the same time is also 
plotted (dashed line). The abscissa is taken as In [l - ( T / R ~ ) ~ ]  in order to give a clear comparison 
with the self-similar profile. 
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Adiabatic similarity model 

r[+v+Yl(Y- 1)1 
r(l+ it4 F [ Y l ( Y  - 111’ 
J J Y l ( Y -  1)1~[+v+(Y+l) l (Y-1)1  

= w Y +  im- 1)1r[v/2+Y/(y- 1)i‘ 

Y U P 

6 - 2.79 1.20 0.16 
0.156 3.96 1.67 

- 0.154 4.79 1.95 

V Y =  
2[v+2Yl(Y- 1)l’ 

Y 
Spherical symmetry 

Cylindrical symmetry 
6 

7 
6 0.135 2.61 1.57 
0 

3 0.146 2.08 1.34 

7 0.129 3.00 1.69 

- 
- 
- 

TABLE 1 

I n  figure 2 we compare the behaviour of the average density, j3, and the gas edge, 
ro,t for the cases (a )  y = $ and ( b )  y = +. It can be seen that for y = 3 the similarity 
model gives a remarkably good representation of the average parameters of the 
expansion. For y = $! a similar conclusion is valid, but the accuracy of the represen- 
tation is not as high. 

Isothermal $ow5 

I n  the case of isothermal expansions we cannot directly identify the similarity profile 
with that of the initially uniform mass, since the Gaussian profile is of infinite extent. 
Two very similar methods of overcoming this difficulty can be proposed. 

(a )  The use of a truncated Gaussian (Haught & Polk 1970) whose edge coincides 
with the edge of the test mass, ro, in the asymptotic limit. We define a similarity 
constant 

re = lim R/ro, (45) 
t-+w 

where R is the l /e  width of the Gaussian. 
(b)  If we can identify an equivalent Lagrangian point in each distribution (for 

example, whose properties are similar in the asymptotic limit) we may use these to 
relate the two distributions and define a value of 

r d  = R(O)/r(O), (46) 

where R(0) is the l / e  width of the Gaussian for which the equivalent points have the 
same value of r initially. 

Cases (a )  and ( b )  are clearly related, but in case ( b )  the mass distribution remains 
infinitely extended, whereas it is finite in (a )  ; this difference is, however, only significant 
if 2 1. 

The asymptotic profiles are shown in figure 3. As for the adiabatic cases the profiles 
are a reasonable approximation to the Gaussian form. We note, however, that as 
before the spherical flow for y = Q shows an off-centre maximum. In each case the 

f The initial radius R(0) is taken to  be the initial edge of the test distribution ~, , (0) ,  i.e. r = 1. 
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FIGURE 2. Time development of the mean density and edge points during the adiabatic expansion 
of polytropic gas spheres and cylinders (full line) is compared with the equivalent value 
calculated for a self-similar expansion (dashed line). 
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FIGURE 3(a).  For caption see opposite. 

asymptotic profile intersects the test gas one. These intersections represent an equal 
density point, whose trajectory is identical for both similar and uniform profile. 
They thus have suitable properties to use as equivalent points. The values of rd so 
obtained are listed in table 2. Such values have the advantage over those of re, also 
given in table 2, that they are not strongly determined by the motion of the outermost 
cell, which is poorly treated by the Lagrangian code. We note that the asymptotic 
properties of the self-similar motion are independent of r. 

In figure 4 we show that development of the characteristic parameters for the 
uniform profile, compared with those of the similarity model. It can be seen that 
although the motion of the edge is well described, that of the mean density is relatively 
inaccurate. This essentially reflects the difference in the asymptotic profiles, figure 3, 
and cannot be improved. In this context we may remark that the density development 
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FIGURE 3. Asymptotic density profiles for the isothermal expansion of polytropic gas spheres (a) 
and cylinders ( b )  of adiabatic index, y (full line). The self-similar profile a t  the same time is also 
plotted (dashed line). 

is almost independent of r for times when R > r,(O) if I' 5 0.5, although, of course, 
the motion of the 'edge' is considerably modified. 

Isothermal flow with energy input 

The value of the similarity model to reproduce initially uniform gas expansion comes 
into its own, when we consider flows with a large gradual heat input. As remarked by 
Nemchinov (1964) we may expect in the asymptotic case of very slow heating of an 
initially cold uniform mass of gas, that  the distribution will closely approximate to 
the self-similar one. Figure 5 shows that this is indeed the case. We consider the 
isothermal heating of initially cold (zero specific energy) uniform cylinders and spheres 
by unit energylunit mass in a time r ,  by a pulse of constant power ( E / T ) .  Comparing 
figure 5 with figure 3 (which may be considered to be the case of T = 0) we see clearly 
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Isothermal similarity model 

Y rd 

Spherical symmetry 

0.456 
- 
b 0.444 
8 

s 
7 0.458 

- 0.514 
0.490 ; 

7 0.496 

- 

Cylindrical symmetry 
5 

9 - 

(2lJn. v =  1 

\4/3Jrr, v = 3) 
a = 1, v = 2  1, p =  2+ 

r e  Y a P 

0.247 0.0457 189.2 3.60 
0.283 0.0614 46-8 2-77 
0.313 0.07 35 28.4 2.70 

0.287 0.0412 17.0 2.04 
0.332 0.0550 9.90 1.96 
0.362 0.0654 7.94 1.96 

TABLE 2 

Heat pulse 
duration 

Spherical symmetry 
0-0 
1 .o 
2.0 
5.0 

10.0 
100.0 

0.0 
1 .o 
2.0 
5.0 

10.0 
100.0 

Cylindrical symmetry 

0.456 
0.486 
0.473 
0.453 
0.524 

0.514 
0.536 
0.511 
0.478 
0.527 
0.489 

0.247 
0.322 
0.354 
0.391 
0.406 
0.397 

0.287 
0.359 
0.391 
0.419 
0.435 
0.423 

TABLE 3 

Y 

0.0457 
0.0775 
0.0943 
0.114 
0.124 
0.116 

0.0412 
0.0645 
0.0763 
0.0896 
0.0943 
0.0862 

a 

189.2 
28.3 
12.9 

10.1 
12-4 

9.80 

17.0 
8.00 
5.83 
4.91 
5.00 
5.84 

P 

3.60 
2.57 

2.36 
2.73 
2.85 

2.03 

2.04 
1.89 
1.77 
1.84 
1.96 
2.00 

that as I- -f 00, the asymptotic distribution becomes more nearly Gaussian. Indeed 
a good Gaussian form is obtained for T 2 5. This is a result of considerable practical 
value, since the similarity model has been widely used to study laser heating, and 
verifies Fader's (1968) study of this behaviour. Specifically thus if 7 2 5r,(O)/(E/M)* 
the similarity model provides a good description of the motion. The values of rd and 
re thus obtained are given in table 3. We note that values of re obtained for a spherical 
distribution are in reasonable agreement with the value of 0.366 given by Fader (1968). 

In view of the fact that the case y = Q showed the most departure from the similarity 
solution when I- = 0, we may expect that this behaviour, namely the approach to a 
self-similar form, will occur for smaller values of y in a corresponding fashion. Test 
calculations confirm that this is indeed the case. 
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Cylindrical 

100.0 1.0 

P r,  

10.0 0.1 

1.0 0.01 
100.0 

1000~0 

re F 

Cylindrical 

100.0 1.0 

10.0 0.1 

I .o 0.001 
0 

Time 
FIGURE 4. Time developmerib of the mean density and ‘edge points ’ during tlie isot,hermal expari- 
sion of polytropic gas spheres and cylinders (full line) is compared with thn equivalent 
values calculated for a self-similar expansion (dashed line). 
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FIGURE 5 (a). For caption see opposite. 

6. Discussion 
The generalization of the self-similar model of gas expansion to a space of arbitrary 

dimensions has been shown to be a straightforward extension of the familiar one- 
dimensional case. The inclusion of additional dimensions of motion in general, how- 
ever, leads to a density distribution function which is a function of the v Lagrangian 
co-ordinates of the gas. This function is determined by the thermodynamic constraints 
on the motion, for example, by the deposition of heat from point-to-point in the fluid. 
In most cases of interest the constraints specified are isotropic in the Lagrangian co- 
ordinates, in which case the density distribution is ellipsoidal, being a function of the 
Lagrangian radius vector, 5. We note that the initially ellipsoidal distribution remains 
so throughout the expansion, although the eccentricities change in time. We have 
shown that this motion is peculiar to self-similar motions with a linear velocity 
gradient, end have therefore called such flows ellipsoidal. 
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FIGURE 5. Asymptotic density profiles for the isothermal expansion of heated spheres (a) and 
cylinders ( b )  of adiabatic index 9. The curves are characterized by the heating time. The dashed 
line shows the equivalent self-similar profile a t  the same time. 

It has been shown that the expansion into vacuum of any body leads asymptotically 
to a self-similar form in the dimensions of the space of the flow. This result has been 
used to suggest that an approximate representation of uniform gas masses may be 
obtained by the use of the self-similar model. The relative mathematical simplicity 
of the self-similar equations make this an attractive approach for all but the simplest 
planar problems, for which exact analytic solutions are available. As a result this 
representation has been widely used to study cylindrical and spherical expansions. 

The validity of this hypothesis applied to the important cases of one dimensional 
spherical and cylindrical flow into vacuum has been examined by comparing self- 
similar flows with those calculated by a numerical fluid code. 

Parameters for the modelling of such expansions based on either the asymptotic 
form, or the equivalent self-similar solution are given. From a practical point-of-view 
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we have verified, for the restricted case of an isothermal polytropic gas of y = $, 
Nemchinov’s ( 1  964) assertion that if the heating time is long, the motion is self-similar 
throughout the times of interest, and that the asymptotic profile is the equivalent self- 
similar profile. This result is also in agreement with the work of Fader (1 968) who 
considered the specific problem of laser heated pellets. In order to match the test 
expansion to a model isothermal flow it is necessary to define a matching parameter, r. 
Two ways of doing this have been discussed. Fortunately, however, the properties of 
the expansion are only weakly dependent on I’, if condition (42) is included, since the 
value of I’ is only poorly known. This is due to the fact that the motion of the fluid 
edge is poorly treated by the Lagrangian code, and further that the self-similar 
description is poor there. An alternative prescription for was suggested to avoid 
these difficulties, but is also not entirely satisfactory. The value of I’ obtained for slow 
heating agrees reasonably well with Fader’s (1968) result of 0.366. 

The extension of these representations to two or more dimensions is not discussed 
in this paper. Apart from the numerical problems of modelling the test flows, there 
are problems with the asymptotic representation. These arise since the asymptotic 
forms are not necessarily ellipsoidal, even if the initial distribution was, by virtue of 
the axiom discussed earlier. The equivalent self-similar distributions on the other 
hand are. However, this is probably not very important since the equivalence is only 
supposed to exist in a coarse averaged sense, and is probably not sensitive to the exact 
form of the distribution: a result already observed in the one-dimensional case through 
the insensitivity of the parameters to r. Alternatively the problem may be approached 
through the use of the asymptotic profile as the self-similar distribution, although this 
may not be a very flexible technique unless the appropriate averages for the problem 
considered are known. 

An analysis of the stability of these self-similar flows with spherical symmetry 
has recently been published by Book (1979), in which it is concluded that the flow 
is unstable only if the specific entropy decreases outwards. In  general both isentropic 
and isothermal flows of the type considered here are therefore stable. 

This work was carried out as part of the XUV laser programme, supported by the 
Science Research Council. 
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